Washington D.C. October 25, 2005

Semi-Automatic Indexing of Full Text Biomedical Articles

Clifford W. Gay

Lister Hill National Center for Biomedical Communications Bethesda, Maryland - USA

Acknowledgments

Alan R. Aronson, PhD.

Mehmet Kayaalp, M.D., PhD.

Outline

Introduction

The System: Medical Text Indexer (MTI)

The Data: Online biomedical journals

The Task: Emulate Medline indexing using full text

Results

Observations on PubMed Central articles

Model selection results

Recent work

Introduction

The System: Medical Text Indexer (MTI)

The Data: Online medical journals

The Task: Emulate Medline indexing using full text

Results

Observations on PubMed Central articles

Model selection results

Recent work

Why Semi-Automatic Indexing?

U.S. National Library of Medicine indexes 5000 journal titles

Supports over 60 million PubMed searches each month

Has 130 indexers

Indexed 570,000 articles in 2004

Will need to index 1,000,000 very soon

Automated support is helping to meet this demand

- MTI was used on 26% of articles in 2004

More about MTI

Aronson AR, Mork JG, Gay CW, Humphrey SM, Rogers WJ.

The NLM Indexing Initiative's Medical Text Indexer.

Medinfo. 2004; 11(Pt 1): 268-72. PMID: 15360816

Medical Text Indexer (MTI)

DCMS with MTI Suggestions

Introduction

The System: Medical Text Indexer (MTI)

The Data: Online biomedical journals

The Task: Emulate Medline indexing using full text

Results

Observations on PubMed Central articles

Model selection results

Recenit work

Why Full Text?

Medical Text Indexer uses article title and abstract However

Human indexers taught not to use abstract Author's complete intent may not be in abstract Check tags may only appear in a table or methods section.

If MTI indexes from full text articles it may

Find central concepts missing from abstract Identify terms when article has no abstract More accurately select check tags Be in better compliance with indexing policy

Test Collection Selection

Available online from PubMed Central

Consistent XML format

Identifies title, abstract, sections, tables, figures, references, etc.

500 articles from 17 diverse biomedical journals

Did not use:

References

Graphics

Math

Test Collection

5 Clinical journals (165):

Breast Cancer Research (11)

Journal of Clinical Microbiology (80)

3 Organization based journals (28):

Journal of American Medical Informatics Assoc. (10)

Proceeding of the National Academy of Sciences (11)

9 Journals in other categories:

Pharmacology (65); Biochemistry (65); Plants (46);

Molecular Biology (45); Learning (30); Hospitals (22)

Introduction

The System: Medical Text Indexer (MTI)

The Data: Online medical journals

The Task: Emulate Medline indexing using full text

Results

Observations on PubMed Central articles

Model selection results

Recent work

Indexing Task

Example Article

Medline Indexing

beta-Lactamases

/*genetics /*metabolism

Enterobacteriaceae/drug effects /*enzymology/genetics

Plasmids/*genetics

Genes, Bacterial/genetics

Genotype

Kinetics

Microbial Sensitivity Tests

Molecular Sequence Data

Research Support, Non-U.S. Gov't

MTI Indexing

- beta-Lactamases
- Plasmids
- Enterobacteriaceae
- beta-Lactam Resistance
- Conjugation, Genetic
- Cephalosporin Resistance
- Cefotaxime
- Nucleotide Sequences
- Molecular Sequence Data
- Cephalosporins
- Chromosomes, Bacterial
- DNA, Bacterial

- DNA Transposable Elements
- Escherichia coli
- Genes, Bacterial
- Cloning, Molecular
- Klebsiella pneumoniae
- Amino Acid Sequence
- Microbial Sensitivity Tests
- Cephalothin
 - Proteus mirabilis
- Erwinia
- Salmonella typhimurium
- Enterobacteriaceae Infections
 - Lactams

MMI REL MMI & REL

Recall = 0.67

Precison = 0.24

 F_2 measure = 0.492

Evaluation

F₂ Measure

Weighted harmonic mean of Recall and Precision

Weights Recall twice as important as Precision

Values: 0.0 to 1.0

Computed for each article and averaged

Introduction

The System: Medical Text Indexer (MTI)

The Data: Online medical journals

The Task: Emulate Medline indexing using full text

Results

Observations on PubMed Central articles

Model selection results

Recenit work

Section Header Classes

Semantically equivalent section headers

MATERIALS AND METHODS class:

Materials and Method(s)

Method(s)

Scoring Methods

Experimental Procedures

Other Methods Tested

CAPTIONS class:

the titles and captions from tables and figures

Section Class Performance

Section Class	Average F ₂		
CAPTIONS	0.3175		
ABSTRACT	0.2960		
INTRODUCTION	0.2869		
RESULTS	0.2790		
DISCUSSION	0.2734		
NO HEADER	0.2574		
	•••		
CONCLUSIONS	0.1961		
ABBREVIATIONS	0.1304		

Introduction

The System: Medical Text Indexer (MTI)

The Data: Online medical journals

The Task: Emulate Medline indexing using full text

Results

Observations on PubMed Central articles

Model selection results

Recenit work

Experiments

Varied MTI components used

MetaMap Indexing (MMI)

Related Citations (REL)

Varied section classes processed

Used model selection

Used binary weighting for sections

A model is

A selection of section classes and

The text in those sections

That represents the article

Production Baseline

Naive Mode

MetaMap Indexing Mode

Augmented Mode

Refined Augmented Mode

$$F_2 = 0.485$$
 (+ 6.1%)

Full MTI Mode

Refined Full MTI

MTI Performance Summary

Indexing Model	Recall	Precision	Avg. F ₂
Production Baseline (Ti, Ab)	0.53	0.32	0.457
Naive Mode (full text)	0.57	0.27	0.453
Augmented Mode (MMI + REL (Ti, Ab))	0.59	0.29	0.475
Augmented Mode (refined)	0.60	0.30	0.485
Full MTI (MMI + REL common sections)	0.60	0.30	0.488
Full MTI (refined)	0.60	0.31	0.491

Introduction

The System: Medical Text Indexer (MTI)

The Data: Online medical journals

The Task: Emulate Medline indexing using full text

Results

Observations on PubMed Central articles

Model selection results

Recent work

Improvement Potential

With current model

No cut off at 25 terms yields maximum recall of 0.79

If all good terms prioritized correctly

$$F_2 = 0.64$$

Improvement over baseline

$$7\% \rightarrow 40\%$$

Increase REL Citations

MTI currently uses 10 Related Citations

Optimal number for full text articles is 15

Best model confirmed for this setting

Additional Improvement in $F_2 = 0.01$

Summarization

Selecting important text before MTI processing

Using Yeh, Ke, Yang, Meng approach

Combines

Latent Semantic Analysis and

Salton's Text Relationship Map

Start with current model

Document representation includes

Bag of words

MetaMap identified concepts

NLM Indexing Initiative

Contact: cliff@nlm.nih.gov

Web: ii.nlm.nih.gov/fulltext.shtml

Clifford W. Gay

Lister Hill National Center for Biomedical Communications Bethesda, Maryland - USA

NONE Sections

Most appear in articles that have no abstract 20/23

Some are errors

4 have "Introduction" header in publisher version

2 appear within other sections with headers.

Many contain the primary text of the article Comments, Editorials, Letters (11/23)

Other Sections

Other section class has 525 sections (16%)

Non-standard article organization

Common in Review articles

Example

B-Lactamases of *Kluyvera ascorbata*, Probable Progenitors of Some Plasmid-Encoded CTX-M Types

Bacterial strains.

Antimicrobial agents and susceptibility testing.

Kinetic and IEF analyses.

Genetic characterization of blaKLUA.

Genetic environment of blaKLUA-1.

Arguments for mobilization of chromosomal blaKLUA gene.

Ranking Function

Made ranking function for Related Citations more like MetaMap Indexing.

Resulted in a more inclusive model

Materials and Methods

Introduction

F2 measure = 0.4865

Tuning Path Weight

Ratio of weights between the two indexing paths

MetaMap Indexing – 7

Related Citations – 2

No improvement possible

Partial Weight for Singleton Headers

OTHER section class

Header is unique

Contain content terms

Gave section class weight between 0 and 1

Some recall improvement

No collection wide improvement in F₂

